A simple op-amp circuit that will trigger a relay when a preset temperature is reached. Please note
that there is no hysteresis in this circuit, so that if the temperature changes rapidly, then the relay
may switch rapidly.
Circuit Notes
This circuit uses an ordinary NTC thermistor with a resistance of 47k at room temperature. A suitable part
fromMaplin Electronics is FX42V.
The circuit is set in balance by adjusting
the the 47k potentiometer. Any change in temperature will alter the
balance of the circuit, the output of the op-amp will change and
energize the relay. Swapping the position of the thermistor and 47k
resistor makes a cold or frost alarm.
Calibration
At room temperature (25 degrees Celsius) a 47k NTC thermistor resistance
is approximately 47k. The non-inverting op-amp input will then be
roughly half the supply voltage, adjusting the 47k pot should allow the
relay to close or remain open. To calibrate the device, the thermistor
ideally needs to be at the required operating temperature. If this is
for example, a hot water tank, then the resistance will decrease, one
way to do this is use a multimeter on the resistance scale, read the
thermistors resistance and then set the preset so that the circuit
triggers at this temperature.
Please note that if the temperature then falls, the relay will
de-energize. If the environment temperatures changes rapidly, then the
relay may chatter, as there is no hysteresis in this circuit.
Hysteresis, allows a small amount of "backlash" to be tolerated. With a
circuit employing hysteresis, there will be
no relay chatter and the circuit will trigger at a defined temperature
and require a different temperature to return to the normal state.
Hysteresis can be applied to the circuit using feedback, try a 1Meg
resistor between op-amp output, pin 6 and the non-inverting input pin 2
to give the circuit hysteresis.
Without offset null adjustment, the output of the 741 IC will be around 2
Volts (quiescent) swinging to nearly full supply when triggered. The
4.7k and 1k resistor form a potential divder so that under quiescent
conditions the transistor will be off. Quiescent or steady state means
no signal, or in this case (when the temperature does not cause
the output to swing to full voltage).
No comments:
Post a Comment